MULTIPLIERS ON MODULES OVER THE FOURIER ALGEBRA(1)

BY

CHARLES F. DUNKL AND DONALD E. RAMIREZ

ABSTRACT. Let G be an infinite compact group and \widehat{G} its dual. For $1 \leq p < \infty$, $\mathfrak{L}^p(\widehat{G})$ is a module over $\mathfrak{L}^1(\widehat{G}) \cong A(G)$, the Fourier algebra of G. For $1 \leq p$, $q < \infty$, let $\mathfrak{M}_{p,q} = \operatorname{Hom}_{A(G)}(\mathfrak{L}^p(\widehat{G}), \mathfrak{L}^q(\widehat{G}))$. If G is abelian, then $\mathfrak{M}_{p,p}$ is the space of $L^p(\widehat{G})$ -multipliers. For $1 \leq p < 2$ and p' the conjugate index of p,

$$A(G) \cong \mathbb{M}_{1,1} \subset \mathbb{M}_{p,p} = \mathbb{M}_{p',p'} \subsetneq \mathbb{M}_{2,2} \cong L^{\infty}(G).$$

Further, the space $\mathfrak{A}_{p,p}$ is the dual of a space called \mathfrak{C}_p , a subspace of $\mathcal{C}_0(\hat{G})$. Using a method of J. F. Price we observe that

$$\bigcup \{\mathfrak{M}_{q,q} \colon 1 \le q < p\} \subsetneq \mathfrak{M}_{p,p} \subsetneq \bigcap \{\mathfrak{M}_{q,q} \colon p < q < 2\}$$

(where $1). Finally, <math>\mathfrak{M}_{q,p} = \{0\}$ for $1 \le p < q < \infty$.

1. Modules over the Fourier algebra. Throughout this paper G will denote an infinite compact group and \hat{G} its dual (we use the notation from [1]). Throughout, $1 \le p$, q, $r \le \infty$. Given p, the conjugate index will be denoted by p' (1/p + 1/p' = 1).

Definition. Let $\phi \in \mathcal{C}_F(\hat{G})$ and so $\phi = \hat{f}$ for f a trigonometric polynomial on G. We define $\check{\phi}$ by the rule $\check{\phi} = (\check{f})^{\hat{}}$ where $\check{f}(x) = f(x^{-1})$, $x \in G$.

Proposition 1. The map $\phi \mapsto \check{\phi}$ from $\mathcal{C}_F(\hat{G})$ to $\mathcal{C}_F(\hat{G})$ extends to an isometry of $\mathfrak{L}^p(\hat{G})$ $(1 and of <math>\mathcal{C}_0(\hat{G})$.

Proof. For f a trigonometric polynomial on G, we have that $(\check{f})^{\hat{}} = ((\bar{f})^{\hat{}})^{\hat{}} = ((\bar{f})^{$

Definition. Let $\phi, \psi \in \mathcal{C}_F(\hat{G})$, we define $\phi \times \psi \in \mathcal{C}_F(\hat{G})$ by the rule $(\phi \times \psi)^{\hat{}} = \hat{\phi}\hat{\psi}$ ($\hat{\phi}$ denotes the inverse Fourier transform of ϕ [1, p. 97]). We note that $\|\phi \times \psi\|_1 \leq \|\phi\|_1 \|\psi\|_1$, $\phi, \psi \in \mathcal{C}_F(\hat{G})$ (see [1, p. 93]). We define the pairing $\langle \phi, \psi \rangle = \operatorname{Tr}(\phi \check{\psi}) = (\phi * (\check{\psi})^{\hat{}})(e) = \int_G \hat{\phi}(x)\hat{\psi}(x)dm_G(x)$, $\phi, \psi \in \mathcal{C}_F(\hat{G})$,

Presented to the Society, October 18, 1971; received by the editors November 3, 1971. AMS (MOS) subject classifications (1970). Primary 43A15, 43A22; Secondary 46E30, 46L20.

Key words and phrases. Fourier algebra, modules over the Fourier algebra, multipliers.
(1) This research was supported in part by NSF contract numbers GP-19852 and GP-31483X.

e the identity in G. Equivalently, $\langle \phi, \psi \rangle = (\phi \times \psi)_{\ell}$ (where ℓ denotes the trivial representation $x \mapsto 1: G \to C$).

The map $(\phi, \psi) \mapsto \langle \phi, \psi \rangle$ extends to a pairing between $\mathcal{L}^p(\hat{G})$ and $\mathcal{L}^{p'}(\hat{G})$ $(1 \leq p < \infty)$, that is, $|\langle \phi, \psi \rangle| \leq ||\phi||_p ||\psi||_{p'}$, and $||\phi||_p = \sup\{|\langle \phi, \psi \rangle| : ||\psi||_{p'} \leq 1\}$, $\phi, \psi \in \mathcal{C}_E(\hat{G})$ (see [1, p. 144]).

Theorem 2. For $1/p+1/q\geq 1$, the map $(\phi,\psi)\mapsto \phi\times\psi\colon \mathcal{C}_F(\hat{G})\times\mathcal{C}_F(\hat{G})\to \mathcal{C}_F(\hat{G})$ $\to \mathcal{C}_F(\hat{G})$ extends to a map of $\mathfrak{L}^p(\hat{G})\times\mathfrak{L}^q(\hat{G})\to \mathfrak{L}^r(\hat{G})$, 1/r=1/p+1/q-1 (we replace $\mathfrak{L}^\infty(\hat{G})$ by $\mathcal{C}_0(\hat{G})$), such that $\|\phi\times\psi\|_r\leq \|\phi\|_p\|\psi\|_q$, $\phi\in\mathfrak{L}^p(\hat{G})$, $\psi\in\mathfrak{L}^q(\hat{G})$.

Proof. For ϕ , ψ , $\theta \in \mathcal{C}_F(\hat{G})$ we define the form F on $\mathcal{C}_F(\hat{G}) \times \mathcal{C}_F(\hat{G}) \times \mathcal{C}_F(\hat{G}) \times \mathcal{C}_F(\hat{G})$ by the rule $F(\phi, \psi, \theta) = \langle \phi \times \psi, \theta \rangle = \int_G \hat{\phi}(x) \hat{\psi}(x) \hat{\theta}(x) dm_G(x) = \langle \psi, \phi \times \theta \rangle$; and thus F is symmetric. Now $|F(\phi, \psi, \theta)| \leq \|\phi \times \psi\|_1 \|\theta\|_{\infty} \leq \|\phi\|_1 \|\psi\|_1 \|\theta\|_{\infty}$, ϕ , ψ , $\theta \in \mathcal{C}_F(\hat{G})$. Let

$$\mathsf{M}(a_1, \ a_2, \ a_3) = \sup \{ |F(\phi_1, \ \phi_2, \ \phi_3)| \colon \phi_j \in \mathcal{C}_F(\hat{G}), \ \|\phi_j\|_{1/a_j} \leq 1, \ 1 \leq j \leq 3 \},$$

 a_1 , a_2 , $a_3 \in [0, 1]$. By the Riesz-Thorin convexity theorem for integration algebras [1, p. 143], it follows that $\log M$ is a convex function on $[0, 1] \times [0, 1] \times [0, 1]$. Since M(1, 0, 1), M(1, 1, 0), $M(0, 1, 1) \le 1$, it follows by interpolating that $M(1/p, 1/q, 1/r') \le 1$ where 1/r = 1/p + 1/q - 1. \square

Corollary 3. For $1 \leq p < \infty$, $\mathfrak{L}^1(\hat{G}) \times \mathfrak{L}^p(\hat{G}) = \mathfrak{L}^p(\hat{G})$ and so $\mathfrak{L}^p(\hat{G})$ is an $\mathfrak{L}^1(\hat{G})$ -module. Also $\mathfrak{L}^1(\hat{G}) \times \mathfrak{C}_0(\hat{G}) = \mathfrak{C}_0(\hat{G})$. For $1 , <math>\mathfrak{L}^p(\hat{G}) \times \mathfrak{L}^p(\hat{G}) \subset \mathfrak{C}_0(\hat{G})$. For 1/p + 1/q > 1, $\mathfrak{L}^p(\hat{G}) \times \mathfrak{L}^q(\hat{G}) \subset \mathfrak{L}^r(\hat{G})$, 1/r = 1/p + 1/q - 1.

Theorem 4. $\mathcal{L}^2(\hat{G}) \times \mathcal{L}^2(\hat{G}) = L^1(G)$.

Proof. Let $\phi, \psi \in \mathcal{Q}^2(\hat{G})$ and choose $\{f_n\}_{n=1}^{\infty}, \{g_n\}_{n=1}^{\infty}$ sequences of trigonometric polynomials on G such that $\hat{f_n} \xrightarrow{n} \phi, \hat{g_n} \xrightarrow{n} \psi$ in $\mathcal{Q}^2(\hat{G})$. Then $f_n g_n \in L^1(G)$, and we wish to show that $\phi \times \psi = \lim_{n \to \infty} \hat{f_n} \times \hat{g_n} = \lim_{n \to \infty} (f_n g_n)^{\hat{G}} \in L^1(G)^{\hat{G}}$. But this follows since $\{f_n g_n\}_{n=1}^{\infty}$ is a Cauchy sequence in $L^1(G)$.

Conversely, for $b \in L^1(G)$, write b = fg, f, $g \in L^2(G)$. Choose $\{\phi_n\}_{n=1}^{\infty}$, $\{\psi_n\}_{n=1}^{\infty}$ sequences from $C_F(\hat{G})$ such that $\phi_n \xrightarrow{n} \hat{f}$, $\psi_n \xrightarrow{n} \hat{g}$ in $\mathcal{L}^2(\hat{G})$. Now $\hat{\phi}_n \hat{\psi}_n \xrightarrow{n} fg$ in $L^1(G)$ and so $\hat{b} = (fg)^{\hat{}} = (\lim_{n \to \infty} \hat{\phi}_n \hat{\psi}_n)^{\hat{}} = \lim_{n \to \infty} (\hat{\phi}_n \hat{\psi}_n)^{\hat{}} = \lim_{n \to \infty} \phi_n \times \psi_n = \lim_{n \to \infty} \phi_n \times \lim_{n \to \infty} \psi_n \in \mathcal{L}^2(\hat{G}) \times \mathcal{L}^2(\hat{G})$. \square

2. Multipliers on modules over the Fourier algebra.

Definition. Let $1/p + 1/q \ge 1$, $\phi \in \mathfrak{L}^p(\hat{G})$, $\psi \in \mathfrak{L}^q(\hat{G})$. We define $\langle \phi, \psi \rangle = (\phi \times \psi)_t$. This is an extension of $\langle \cdot, \cdot \rangle$ from $\mathcal{C}_F(\hat{G}) \times \mathcal{C}_F(\hat{G})$.

Definition. Let $1 \leq p$, $q \leq \infty$. We define $\widehat{\mathbb{M}}_{p,q} = \operatorname{Hom}_{\mathfrak{L}^1(\widehat{G})}(\mathfrak{L}^p(\widehat{G}), \mathfrak{L}^q(\widehat{G}))$, except that we replace $\widehat{\mathfrak{L}}^\infty(\widehat{G})$ by $C_0(\widehat{G})$. Note that $\widehat{\mathfrak{L}}^p(\widehat{G})$ is an $\widehat{\mathfrak{L}}^1(\widehat{G})$ -module (Corollary 3). (See Rieffel [7] for a more general setting.)

Proposition 5. Let $T: \mathcal{C}_F(\hat{G}) \to \mathcal{C}_0(\hat{G})$ be a linear map. Define $\|T\|_{p,q} = \sup\{|\langle T\phi, \psi \rangle|: \|\phi\|_p \leq 1, \|\psi\|_{q'} \leq 1, \phi, \psi \in \mathcal{C}_F(\hat{G})\}$. Then $\log \|T\|_{1/a_1, 1/a_2}$ is a convex function for $(a_1, a_2) \in [0, 1] \times [0, 1]$.

Proof. Apply the Riesz-Thorin convexity theorem for integration algebras [1, p. 143]. \Box

Proposition 6. $\mathfrak{M}_{2,2} \cong L^{\infty}(G)$.

Proof. By taking the inverse Fourier transform we see that $\mathcal{M}_{2,2}$ is isomorphic to the space of bounded maps T from $L^2(G)$ to $L^2(G)$ which commute with multiplication by elements of A(G), that is, $T: L^2(G) \to L^2(G)$, T(fg) = f(Tg), $f \in A(G)$, $g \in L^2(G)$. Thus T is multiplication by an element of $L^{\infty}(G)$, that is, there exists $b \in L^{\infty}(G)$ such that Tg = bg, $g \in L^2(G)$ (let b = T1). \square

Theorem 7. Let $1 \leq p$, $q \leq \infty$. Then $\mathfrak{M}_{p,q} = \mathfrak{M}_{q',p'}$.

Proof. We first suppose 1 < p, $q < \infty$. Let $T \in \mathcal{M}_{p,q}$. Thus $T : \mathcal{C}_F(\hat{G}) \to \mathcal{C}_0(\hat{G})$, and $\|T\|_{p,q} < \infty$. Now $T(\phi \times \psi) = \phi \times (T\psi)$, $\phi, \psi \in \mathcal{C}_F(\hat{G})$. Define the adjoint of T, S by $S : \mathcal{C}_F(\hat{G}) \to \mathcal{C}_0(\hat{G})$ and $\langle T\phi, \psi \rangle = \langle \phi, S\psi \rangle$, $\phi, \psi \in \mathcal{C}_F(\hat{G})$. For $\phi, \psi \in \mathcal{C}_F(\hat{G})$, $\langle T\phi, \psi \rangle = ((T\phi) \times \psi)_t = (T(\phi \times \psi))_t = (T(\psi \times \phi))_t = ((T\psi) \times \phi)_t = (\phi \times (T\psi))_t = \langle \phi, T\psi \rangle$. Thus S and T agree on $\mathcal{C}_F(\hat{G})$.

Now for $\phi, \psi \in \mathcal{C}_F(\hat{G})$, $\langle T\phi, \psi \rangle = \langle \phi, S\psi \rangle = \langle \phi, T\psi \rangle$, and so $\|T\|_{p,q} = \|T\|_{q',p'}$. It follows that $T \mid \mathcal{C}_F(\hat{G})$ extends uniquely to an element of $\mathcal{M}_{q',p'}$ and so $\mathcal{M}_{p,q} \subseteq \mathcal{M}_{q',p'}$. By symmetry $\mathcal{M}_{q',p'} = \mathcal{M}_{p,q}$.

We consider now the exceptional cases. Since $\mathfrak{L}^1(\hat{G})$ has an identity, we obtain $\mathfrak{M}_{1,p}=\mathfrak{L}^p(\hat{G})$ for $1\leq p<\infty$ and $\mathfrak{M}_{1,\infty}=\mathcal{C}_0(\hat{G})$. Further, applying the previous argument we see that $T\in \mathfrak{M}_{p,\infty}$ implies $T\in \mathfrak{M}_{1,p'}=\mathfrak{L}^p(\hat{G})$. But by Corollary 3, $\mathfrak{L}^p(\hat{G})\subset \mathfrak{M}_{p,\infty}$, so $\mathfrak{M}_{p,\infty}=\mathfrak{M}_{1,p'}$. The other spaces $\mathfrak{M}_{p,1}$ (p>1) and $\mathfrak{M}_{\infty,q}$ $(q<\infty)$ will be shown to be trivial in Theorem 10. \square

Theorem 8. Let 1 . Then

$$A(G) \cong \mathfrak{L}^{1}(\hat{G}) = \mathfrak{M}_{1,1} \subset \mathfrak{M}_{p,p} \subset \mathfrak{M}_{q,q} \subset \mathfrak{M}_{2,2} \cong L^{\infty}(G).$$

Proof. That $\mathfrak{L}^1(\hat{G}) = \mathfrak{M}_{1,1}$ follows since A(G) has an identity. Since $\mathfrak{L}^p(\hat{G})$ is an $\mathfrak{L}^1(\hat{G})$ -module, $\mathfrak{M}_{1,1} \subset \mathfrak{M}_{p,p}$ (recall Theorem 2).

Let $T \in \mathbb{M}_{q,q}$. Then $\|T\|_{q,q} = \|T\|_{q',q'} < \infty$. Since $\log \|T\|_{1/a_1,1/a_2}$ is a convex function of $(a_1, a_2) \in [0, 1] \times [0, 1]$, $\|T\|_{2,2} \le \|T\|_{q,q}$. Thus $\mathbb{M}_{q,q} \subset \mathbb{M}_{2,2}$.

Now for $T \in \mathbb{M}_{p,p}$, $\|T\|_{p,p} < \infty$. Also $\|T\|_{2,2} \le \|T\|_{p,p} < \infty$. Now since 1/2 < 1/q < 1/p, we can interpolate to get $\|T\|_{q,q} \le \|T\|_{p,p} < \infty$. Thus $\mathbb{M}_{p,p} \subset \mathbb{M}_{q,q}$. \square

Theorem 9. Let $1 \leq p < 2$. Then $\mathfrak{M}_{p,p} \neq \mathfrak{M}_{2,2}$.

Proof. By way of contradiction, suppose $\mathfrak{M}_{\mathfrak{p},\mathfrak{p}}=\mathfrak{M}_{2,2}=L^{\infty}(G)$. Then $L^{\infty}(G) \cap \mathbb{C}^p(\hat{G})$ (since $\hat{1} \in \mathbb{C}^p(\hat{G})$), and so $\|\hat{f}\|_{\mathfrak{p}} \leq C\|f\|_{\infty}$, $f \in L^{\infty}(G)$, $C < \infty$. In particular, $f \mapsto \hat{f}$ maps C(G) into $\mathbb{C}^p(\hat{G})$, and its adjoint Υ maps $\mathbb{C}^p(\hat{G})$ into M(G). Further $\Upsilon: \mathbb{C}^p(\hat{G}) \to L^1(G)$ (since $\Upsilon(\mathbb{C}_F(\hat{G})) \subset L^1(G)$ and $L^1(G)$ is closed). Let $\phi \in \mathbb{C}^p(\hat{G})$ and $\phi \in \mathbb{C}^p(\hat{G})$. Then $\phi \in \mathbb{C}^p(\hat{G})$ and $\phi \in L^1(G)$, that is, the map $\phi \mapsto (\phi \phi)$ takes $\mathbb{C}^p(\hat{G})$ into $\mathbb{C}^p(\hat{G})$. It follows now from a theorem of $\mathbb{C}^p(\hat{G})$. Helgason $\mathbb{C}^p(\hat{G})$ that $\phi \in \mathbb{C}^p(\hat{G})$. Thus $\mathbb{C}^p(\hat{G}) \subset \mathbb{C}^p(\hat{G})$, a contradiction. \square

Theorem 10. Let $1 \le p < q \le \infty$, then $\mathfrak{M}_{q,p} = \{0\}$.

Proof. First, let 1 < p' < 2 < p. We show that $\mathbb{M}_{p,p'} = \{0\}$. For if $T \in \mathbb{M}_{p,p'}$, $T \neq 0$, then there exists $b \in L^{\infty}(G)$, $b \neq 0$, such that $f \mapsto bf$ is a bounded linear operator from $L^p(G) \to L^p(G)$ (consider the maps: $L^p(G) \stackrel{\frown}{\to} \mathbb{C}^p(\hat{G}) \stackrel{\frown}{\to} \mathbb{C}^p(\hat{G}) \stackrel{\frown}{\to} L^p(G)$, see [1, p. 144]). Thus there exists $C < \infty$ such that $\|bf\|_p \leq C\|f\|_{p'}$, $f \in L^p(G)$. Let $\epsilon > 0$ be such that $\{x \colon |b(x)| \geq \epsilon\}$ contains a measurable set E with $m_G(E) > 0$, and let χ_E denote the characteristic function of E. Then

$$\epsilon^{p} m_{G}(E) \leq \|b\chi_{E}\|_{p}^{p} \leq C^{p} \|\chi_{E}\|_{p}^{p} = C^{p} (m_{G}(E))^{p/p'},$$

and so $0 < \epsilon^p/C^p \le (m_G(E))^{p/p'-1}$. But let $m_G(E)$ tend to 0 for the required contradiction. Thus we have established $\mathfrak{M}_{p,p'} = \{0\}, \ 1 < p' < 2 < p$.

Now let $T \in \mathbb{M}_{q,p}$, $T \neq 0$, $1 \leq p < q \leq \infty$, excepting the case $\mathbb{M}_{\infty,1}$. Thus, $\|T\|_{p',q'} = \|T\|_{q,p} < \infty$. The Riesz-Thorin convexity theorem implies for 1/r = 1/2 - 1/2p + 1/2q that $\mathbb{M}_{r,r'} \neq \{0\}$, a contradiction. Finally, $\mathbb{M}_{\infty,1} \subset \mathbb{M}_{2,1} = \{0\}$. \square

Remark. The proof of the above theorem was suggested to us by our colleague John Fournier.

3. Multipliers as dual spaces. For G abelian, $\mathbb{M}_{p,p}$ is the space of $L^p(\hat{G})$ -multipliers, and A. Figà-Talamanca [4] (also M. Rieffel [7]) has shown it to be a dual space. We now will exhibit this result for the case of G nonabelian (compact). For p=1, $\mathbb{M}_{1,1}$ is clearly a dual space; indeed, $\mathbb{M}_{1,1}=\mathbb{Q}^1(\hat{G})=\mathcal{C}_0(\hat{G})^*$ (see [1, p. 88]).

Definition. Let $1 . For <math>\phi \in \mathcal{C}_0(\hat{G})$, we define

$$\|\phi\|_{p} = \inf \left\{ \sum_{n=1}^{\infty} \|\phi_{n}\|_{p} \|\psi_{n}\|_{p'} : \phi = \sum_{n=1}^{\infty} \phi_{n} \times \psi_{n} \text{ (convergence in } \mathcal{C}_{0}(\hat{G})), \right.$$

$$\left\{\phi_n\right\}_{n=1}^{\infty} \in \mathcal{Q}^p(\hat{G}), \, \left\{\psi_n\right\}_{n=1}^{\infty} \in \mathcal{Q}^{p'}(\hat{G}) \, \right\}.$$

We use the convention that inf $\emptyset = \infty$. The subspace of $\mathcal{C}_0(\hat{G})$ consisting of all ϕ with $\|\phi\|_p < \infty$ is denoted by \mathcal{C}_p .

Remark. By Theorem 4, $\mathfrak{A}_2 = L^1(G)$.

Proposition 11. For $1 , <math>\mathcal{C}_p$ is a Banach space.

Proof. It is easy to show $\|\cdot\|_p$ is a norm. We wish now to show that $(\hat{\mathbb{T}}_p)$ is complete with respect to $\|\cdot\|_p$. Let $\{\phi_n\}_{n=1}^\infty$ be a Cauchy sequence in $(\hat{\mathbb{T}}_p)$. We may assume that $\|\phi_n - \phi_{n+1}\|_p < 1/2^{n+1}$. Let $\psi_n = \phi_{n+1} - \phi_n \in \hat{\mathbb{G}}_p$, and so write ψ_n as $\sum_{m=1}^\infty \theta_{nm} \times \omega_{nm}$, $\theta_{nm} \in \hat{\mathbb{C}}^p(\hat{G})$, $\omega_{nm} \in \hat{\mathbb{C}}^p(\hat{G})$, and $\sum_{m=1}^\infty \|\theta_{nm}\|_p \|\omega_{nm}\|_{p'} < 1/2^n$. Let $\phi = \phi_1 + \sum_{n=1}^\infty \psi_n$. Now $\|\phi\|_p \le \|\phi_1\|_p + \sum_{n=1}^\infty 1/2^n < \infty$, and so $\phi \in \hat{\mathbb{C}}_p$. Also $\|\phi_m - \phi\|_p = \|\sum_{n=m+1}^\infty \psi_n\|_p < \sum_{n=m+1}^\infty 1/2^n$, which is small for large enough m. \square

Theorem 12. Let $\xi \in \widehat{\mathcal{C}}_p^*$ $(1 . Then there exists <math>T \in \mathbb{M}_{p,p}$ such that $||T||_{p,p} \le ||\xi||$ and $\langle T\phi, \psi \rangle = \xi(\phi \times \psi), \ \phi, \psi \in \mathcal{C}_F(\widehat{G}).$

Proof. For $\phi, \psi \in \mathcal{C}_F(\hat{G})$, $|\xi(\phi \times \psi)| \leq \|\phi \times \psi\|_p \|\xi\| \leq \|\phi\|_p \|\psi\|_{p'} \|\xi\|$. Thus, for each $\phi \in \mathcal{C}_F(\hat{G})$, the map $\psi \mapsto \xi(\phi \times \psi)$ extends to a bounded linear functional on $\mathfrak{L}^p(\hat{G})$. Let $\omega \in \mathfrak{L}^p(\hat{G}) = (\mathfrak{L}^p(\hat{G}))^*$ be such that $(\omega, \psi) = \xi(\phi \times \psi)$. Define $T\phi = \omega(\phi \in \mathcal{C}_F(\hat{G}))$. Thus $\langle T\phi, \psi \rangle = \xi(\phi \times \psi)$. Now $T: \mathcal{C}_F(\hat{G}) \to \mathfrak{L}^p(\hat{G})$ and $\|T\|_{p,p} \leq \|\xi\|$, so we may extend T to all of $\mathfrak{L}^p(\hat{G})$. Finally, to see that $T \in \mathfrak{M}_{p,p}$ we note that $\langle T(\phi_1 \times \phi_2), \psi \rangle = \xi((\phi_1 \times \phi_2) \times \psi) = \xi(\phi_1 \times (\phi_2 \times \psi)) = ((T\phi_1) \times (\phi_2 \times \psi))_t = \langle (T\phi_1) \times \phi_2, \psi \rangle$, $\phi_1, \phi_2, \psi \in \mathcal{C}_F(\hat{G})$. Thus $T(\phi_1 \times \phi_2) = (T\phi_1) \times \phi_2$, $\phi_1, \phi_2 \in \mathcal{C}_F(\hat{G})$. Thus $T \in \mathfrak{M}_{p,p}$. \square

Proposition 13. Let $\phi \in \mathbb{Q}^p(\hat{G})$ $(1 \leq p < \infty)$ or $\phi \in \mathcal{C}_0(\hat{G})$ $(p = \infty)$ and $\epsilon > 0$. Then there exists a sequence $\{\phi_n\}_{n=1}^{\infty} \subset \mathcal{C}_F(\hat{G})$ such that $\sum_{n=1}^{\infty} \|\phi_n\|_p < \|\phi\|_p + \epsilon$ and $\sum_{n=1}^{\infty} \phi_n = \phi$ (convergence in norm).

Proof. For $n=1,2,\cdots$, let $\psi_n\in\mathcal{C}_F(\hat{G})$ be such that $\|\psi_n-\phi\|_p<\epsilon/2^n$. Let $\phi_1=\psi_1$ and, for $n=2,3,\cdots$, let $\phi_n=\psi_{n+1}-\psi_n$. Then $\{\phi_n\}_{n=1}^\infty\subset\mathcal{C}_F(\hat{G}),\ \Sigma_{n=1}^\infty\|\phi_n\|_p<\|\phi\|_p+\Sigma_{n=1}^\infty\epsilon/2^n=\|\phi\|_p+\epsilon$, and $\Sigma_{n=1}^N\phi_n=\psi_{N+1}\stackrel{N}{\longrightarrow}\phi$ in $\mathfrak{L}^p(\hat{G})$. \square

Proposition 14. Let $\phi \in \mathbb{Q}^p(\hat{G})$, $\psi \in \mathbb{Q}^{p'}(\hat{G})$, and $\epsilon > 0$ $(1 . Then there exist sequences <math>\{\phi_n\}_{n=1}^{\infty}$, $\{\psi_n\}_{n=1}^{\infty} \subset \mathcal{C}_F(\hat{G})$ such that $\sum_{n=1}^{\infty} \|\phi_n\|_p \|\psi_n\|_{p'} < \|\phi\|_p \|\psi\|_{p'} + \epsilon$, and $\sum_{n=1}^{\infty} \phi_n \times \psi_n = \phi \times \psi$ (convergence in $\mathcal{C}_0(\hat{G})$).

Proof. Let ϵ' , $\epsilon'' > 0$ be chosen in a way to be specified later. By Proposition 13, there exist sequences $\{\phi_n\}_{n=1}^{\infty}$, $\{\psi_n\}_{n=1}^{\infty} \subset \mathcal{C}_F(\hat{G})$ such that $\sum_{n=1}^{\infty} \phi_n = \phi$, $\sum_{n=1}^{\infty} \psi_n = \psi$, $\sum_{n=1}^{\infty} \|\phi_n\|_p < \|\phi\|_p + \epsilon'$, and $\sum_{n=1}^{\infty} \|\psi_n\|_{p'} < \|\psi\|_{p'} + \epsilon''$. Let $\phi_n' = \sum_{k=1}^{n} \phi_k$ and $\psi_n' = \sum_{k=1}^{n} \psi_k$. Now $\phi_n' \times \psi_n' \stackrel{\text{d}}{\longrightarrow} \phi \times \psi$ in $\mathcal{C}_0(\hat{G})$ (by joint continuity). Now $\phi_n' \times \psi_n' = \sum_{k,l=1}^{n} \phi_k \times \psi_l$; also $\sum_{k,l=1}^{n} \|\phi_k\|_p \|\psi_l\|_{p'} = \sum_{k=1}^{n} \|\phi_k\|_p \sum_{l=1}^{n} \|\psi_l\|_{p'} < (\|\phi\|_p + \epsilon')(\|\psi\|_{p'} + \epsilon'') < \|\phi\|_p \|\psi\|_{p'} + \epsilon$ for the

appropriate choice of ϵ' , ϵ'' . Finally, note that $\phi'_n \times \psi'_n = \sum_{k=l=1}^n \phi_k \times \psi_l$.

Proposition 15. Let $\omega \in \widehat{\mathcal{C}}_p$ $(1 and <math>\epsilon > 0$. Then there exist sequences $\{\phi_n\}_{n=1}^{\infty}, \{\psi_n\}_{n=1}^{\infty} \subset \widehat{\mathcal{C}}_F(\widehat{G})$ such that $\omega = \sum_{n=1}^{\infty} \phi_n \times \psi_n$ (convergence in $\widehat{\mathcal{C}}_0(\widehat{G})$) and $\sum_{n=1}^{\infty} \|\phi_n\|_p \|\psi_n\|_{p'} < \|\omega\|_p + \epsilon$.

Proof. There exist sequences $\{\phi_{n}'\}_{n=1}^{\infty}\subset \mathcal{Q}^{p}(\hat{G}) \text{ and } \{\psi_{n}'\}_{n=1}^{\infty}\subset \mathcal{Q}^{p}'(\hat{G}) \text{ such that } \omega = \sum_{n=1}^{\infty} \phi_{n}' \times \psi_{n}' \text{ and } \sum_{n=1}^{\infty} \|\phi_{n}'\|_{p} \|\psi_{n}'\|_{p}' < \|\omega\|_{p} + \epsilon/2. \text{ For each } n=1,2,\ldots, \text{ there exist sequences } \{\phi_{nm}\}_{m=1}^{\infty}, \{\psi_{nm}\}_{m=1}^{\infty}\subset \mathcal{C}_{F}(\hat{G}) \text{ such that } \phi_{n} \times \psi_{n} = \sum_{m=1}^{\infty} \phi_{nm} \times \psi_{nm} \text{ and } \sum_{m=1}^{\infty} \|\phi_{nm}\|_{p} \|\psi_{nm}\|_{p}' < \|\phi_{n}'\|_{p} \|\psi_{n}'\|_{p}' + \epsilon/2^{n+1}. \text{ Now } \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \|\phi_{nm}\|_{p} \|\psi_{nm}\|_{p}' < \sum_{n=1}^{\infty} \|\phi_{n}'\|_{p} \|\psi_{n}'\|_{p}' + \epsilon/2 < \|\omega\|_{p} + \epsilon \text{ and } \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \phi_{nm} \times \psi_{nm} = \omega. \quad \Box$

Proposition 16. Let $\delta > 0$ and let $X_{\delta} = \{\omega \in \mathcal{C}_F(\widehat{G}): \omega = \sum_{n=1}^N \phi_n \times \psi_n, \phi_n, \psi_n \in \mathcal{C}_F(\widehat{G}), \|\|\omega\|\|_p + \delta > \sum_{n=1}^N \|\phi_n\|_p \|\psi_n\|_{p'}, \text{ some } N = 1, 2, \cdots \}.$ Then each X_{δ} is dense in \mathcal{C}_{b} (1 .

Proof. Fix $\delta > 0$, $\xi \in \widehat{\mathbb{G}}_p$, and $0 < \epsilon < \delta/2$. By Proposition 15, there exist sequences $\{\phi_n\}_{n=1}^{\infty}, \{\psi_n\}_{n=1}^{\infty} \subset \mathcal{C}_F(\widehat{G})$ such that $\xi = \sum_{n=1}^{\infty} \phi_n \times \psi_n$ and $\sum_{n=1}^{\infty} \|\phi_n\|_p \|\psi_n\|_{p'} < \|\xi\|_p + \epsilon$. Choose N such that $\sum_{n=N+1}^{\infty} \|\phi_n\|_p \|\psi_n\|_{p'} < \epsilon$ and let $\omega = \sum_{n=1}^{N} \phi_n \times \psi_n$. Then $\|\omega - \xi\| \le \|\sum_{n=N+1}^{\infty} \phi_n \times \psi_n\| < \epsilon$ and $\sum_{n=1}^{N} \|\phi_n\|_p \|\psi_n\|_{p'} \le \sum_{n=1}^{\infty} \|\phi_n\|_p \|\psi_n\|_{p'} < \|\xi\|_p + \epsilon \le \|\omega\|_p + 2\epsilon$. Thus $\omega \in X_\delta$ and $\|\omega - \xi\|_p < \epsilon$. \square

Theorem 17. Let $1 and <math>T \in \mathbb{M}_{p,p}$. Then T extends to a bounded linear map from $\mathfrak{A}_p \to \mathfrak{A}_p$, and the linear functional $T^{\#}: \mathfrak{A}_p \to C$ given by $T^{\#}(\omega) = (T\omega)_{l}$ is in \mathfrak{A}_p^* with $\|T^{\#}\| \le \|T\|$. Thus $\mathfrak{A}_p^* \cong \mathbb{M}_{p,p}$.

Proof. Let $\delta > 0$ and $\omega \in X_{\delta} \subset \mathcal{C}_F(\hat{G}) \subset \mathfrak{L}^p(\hat{G})$. Write $\omega = \sum_{n=1}^N \phi_n \times \psi_n$, ϕ_n , $\psi_n \in \mathcal{C}_F(\hat{G})$, where $\|\omega\|_p + \delta > \sum_{n=1}^N \|\phi_n\|_p \|\psi_n\|_{p'}$. Now $T\omega = T(\sum_{n=1}^N \phi_n \times \psi_n) = \sum_{n=1}^N T(\phi_n \times \psi_n) = \sum_{n=1}^N (T\phi_n) \times \psi_n$, and $\|T\omega\|_p \leq \sum_{n=1}^N \|T\phi_n\|_p \|\psi_n\|_{p'} \leq \|T\|_{p,p}$ ($\|\omega\|_p + \delta$). But X_{δ} is dense in \mathcal{C}_p and so T extends to \mathcal{C}_p with norm less than or equal to $\|T\|_{p,p} (1 + \delta)$. But $\delta > 0$ is arbitrary and so $\|T\omega\|_p \leq \|T\|_{p,p} \|\omega\|_p$. \square

Corollary 18. For $1 \le r < 2$, $\mathfrak{M}_{r,r} \subsetneq \bigcap \{ \mathfrak{M}_{s,s} : r < s < 2 \}$, and for $1 < r \le 2$, $\bigcup \{ \mathfrak{M}_{s,s} : 1 < s < r \} \subsetneq \mathfrak{M}_{r,r}$.

Proof. J. F. Price [6, pp. 326-330] has given a general argument based on the Riesz-Thorin convexity theorem which yields the corollary using only the facts that $\mathbb{M}_{q,q} \neq \mathbb{M}_{2,2}$ (q < 2) (see Theorem 9), that $\mathbb{M}_{q,q}$ is the dual space of \mathbb{G}_q , and that \mathbb{G}_q contains $\mathfrak{L}^1(\widehat{G})$ as a dense subspace (see Proposition 16). \square

Definition. Let $1 \le p, q < \infty$, $1/p + 1/q \ge 1$, and 1/r = 1/p + 1/q - 1. We define for $\phi \in \mathfrak{L}^r(\hat{G})$,

$$\begin{split} \left\| \phi \right\|_{p,q} &= \inf \left\{ \sum_{n=1}^{\infty} \left\| \phi_n \right\|_{p} \left\| \psi_n \right\|_{q} \colon \phi = \sum_{n=1}^{\infty} \phi_n \times \psi_n \text{ (convergence in } \mathfrak{L}^r(\hat{G})), \\ \left\{ \phi_n \right\}_{n=1}^{\infty} &\subset \mathfrak{L}^p(\hat{G}), \left\{ \psi_n \right\}_{n=1}^{\infty} &\subset \mathfrak{L}^q(\hat{G}) \right\}. \end{split}$$

The subspace of $\mathfrak{L}^r(\hat{G})$ consisting of all ϕ with $\|\phi\|_{p,q} < \infty$ is denoted by $\mathfrak{C}_{p,q}$.

Remark. For $1 , observe that <math>\mathcal{C}_{p,p'} = \mathcal{C}_p$; and indeed, for $1 \le p < q \le \infty$, one can show that $\mathcal{C}_{p,q'}^* \cong \mathcal{M}_{p,q}$, by appropriately modifying the preceding proofs. (Note for p > q that $\mathcal{M}_{p,q} = \{0\}$, and for $1 \le p < q \le \infty$ that 1/p + 1/q' > 1.)

Definition. Let WO denote the weak operator topology on $\mathcal{M}_{p,p}$, and let w^* denote the weak-*topology on $\mathcal{M}_{p,p}$ ($1) from the pairing of <math>\mathcal{C}_p$ with $\mathcal{M}_{p,p}$. Thus $T_\alpha \xrightarrow{\alpha} T$ ($\{T_\alpha\}, \{T\} \in \mathcal{M}_{p,p}$) in WO if and only if $\langle T_\alpha \phi, \psi \rangle \xrightarrow{\alpha} \langle T \phi, \psi \rangle$, $\phi \in \mathfrak{L}^p(\hat{G}), \ \psi \in \mathfrak{L}^p(\hat{G}); \ \text{and} \ T_\alpha \xrightarrow{\alpha} T \ \text{in} \ w^* \ \text{if and only if} \ T_\alpha^\# \omega \xrightarrow{\alpha} T^\# \omega$, for each $\omega \in \mathcal{C}_p$.

Theorem 19. In $\mathfrak{M}_{p,p}$ $(1 , <math>WO \subset w^*$.

Proof. Let T_{α} , $T \in \mathbb{M}_{p,p}$ with $T_{\alpha} \stackrel{\Delta}{\longrightarrow} T$ in w^* . Thus $T_{\alpha}^{\#} \omega \stackrel{\Delta}{\longrightarrow} T^{\#} \omega$ for all $\omega \in \mathbb{G}_p$. Extend T_{α} , T to operators from \mathbb{G}_p to \mathbb{G}_p (as in Theorem 17) such that $T_{\alpha}^{\#} \omega = (T_{\alpha} \omega)_{t}$, $T^{\#} \omega = (T \omega)_{t}$ ($\omega \in \mathbb{G}_p$). Let $\phi \in \mathbb{S}^p(\widehat{G})$, $\psi \in \mathbb{S}^p(\widehat{G})$. We wish to show that $\langle T_{\alpha} \phi, \psi \rangle \stackrel{\Delta}{\longrightarrow} \langle T \phi, \psi \rangle$. It suffices to show that $S(\phi \times \psi) = (S\phi) \times \psi$, $S \in \mathbb{M}_{p,p}$: for then $\langle T_{\alpha} \phi, \psi \rangle = ((T_{\alpha} \phi) \times \psi)_{t} = (T_{\alpha} (\phi \times \psi))_{t} = T_{\alpha}^{\#} (\phi \times \psi) \stackrel{\Delta}{\longrightarrow} T^{\#} (\phi \times \psi) = (T(\phi \times \psi))_{t} = (T\phi) \times \psi_{t}$. Now let $\psi_n \stackrel{n}{\longrightarrow} \psi$ in $\mathbb{S}^p(\widehat{G})$, $\{\psi_n\}_{n=1}^{\infty} \subset \mathcal{C}_F(\widehat{G})$. Then for $S \in \mathbb{M}_{p,p}$, we have that $\phi \times \psi_n \stackrel{n}{\longrightarrow} \phi \times \psi$ in \mathbb{G}_p and so $S(\phi \times \psi) = \lim_{n \to \infty} S(\phi \times \psi_n) = \lim_{n \to \infty} (S\phi) \times \psi_n = (S\phi) \times \psi$.

Corollary 20. On bounded subsets of $\mathfrak{M}_{p,p}$ (1

Proof. Bounded closed subsets of $\mathbb{G}_p^* \cong \mathbb{M}_{p,p}$ are w^* -compact. \square

Theorem 21. Let Φ denote the w^* -closure of $\mathcal{C}_F(\hat{G})$ or $\mathfrak{L}^1(\hat{G})$ in $\mathfrak{M}_{p,p}$, $1 . Then <math>\Phi = \mathfrak{M}_{p,p}$.

Proof. Suppose $\Phi \neq \mathbb{M}_{p,p}$, then there exists $\omega \in \widehat{\mathbb{G}}_p$ such that $\omega \neq 0$ and $T^{\#}(\omega) = 0$ for all $T \in \mathcal{C}_F(\widehat{G}) \subset \mathbb{M}_{p,p}$. But if $T \in \mathcal{C}_F(\widehat{G})$, considered as a subspace of $\mathbb{M}_{p,p}$, then there exists a $\phi \in \mathcal{C}_F(\widehat{G})$ such that $T\psi = \phi \times \psi$ for all $\psi \in \mathfrak{L}^p(\widehat{G})$. Thus $T^{\#}(\omega) = (T\omega)_{\ell} = (\phi \times \omega)_{\ell} = \langle \phi, \omega \rangle = 0$, for all $\phi \in \mathcal{C}_F(\widehat{G})$. But $\omega \in \widehat{\mathbb{G}}_p \subset \mathcal{C}_0(\widehat{G})$, so $\omega = 0$. \square

Corollary 22. For $1 , <math>\mathcal{C}_F(\hat{G})$ is WO-dense in $\mathfrak{M}_{p,p}$.

Remark. An invariant mean on $\mathfrak{L}^{\infty}(\hat{G})$ is a bounded linear functional p on

 $\mathcal{L}^{\infty}(\hat{G})$ such that (1) $p(\phi) \geq 0$ whenever $\phi \geq 0$, (2) p(I) = 1 (I is the identity in $\mathcal{L}^{\infty}(\hat{G})$), and (3) $p(\hat{f} \times \phi) = f(e)p(\phi)$, $f \in A(G)$, $\phi \in \mathcal{L}^{\infty}(\hat{G})$. In [2] we showed that invariant means exist on $\mathcal{L}^{\infty}(\hat{G})$.

Let p be an invariant mean on $\mathfrak{L}^{\infty}(\hat{G})$. Define $T: \mathfrak{L}^{\infty}(\hat{G}) \to \mathfrak{L}^{\infty}(\hat{G})$ by $\langle \psi, T\phi \rangle = p(\psi \times \phi), \ \psi \in \mathfrak{L}^1(\hat{G}), \ \phi \in \mathfrak{L}^{\infty}(\hat{G}); \ \text{and so} \ T\phi = p(\phi)I.$ Thus $T \in \operatorname{Hom}_{\mathfrak{L}^1(\hat{G})}(\mathfrak{L}^{\infty}(\hat{G}), \mathfrak{L}^{\infty}(\hat{G})).$ Also T/=0 for $f \in L^1(G)$, and it follows that T annihilates $\mathfrak{C}_0(\hat{G}) = \operatorname{cl}(L^1(G)^{\hat{G}})$ (closure in $\mathfrak{C}_0(\hat{G})$): since for $\mu \in M(G)$, $p(\hat{\mu}) = \mu(\{e\})$ (see [3]).

BIBLIOGRAPHY

- 1. C. Dunkl and D. Ramirez, Topics in harmonic analysis, Appleton-Century-Crofts, New York, 1971.
- 2. ——, Existence and nonuniqueness of invariant means on $\mathfrak{L}^{\infty}(\hat{G})$, Proc. Amer. Math. Soc. 32 (1972), 525-530.
- 3. ——, Helson sets in compact and locally compact groups, Michigan Math. J. 19 (1972), 65-69.
- 4. A. Figà-Talamanca, Translation invariant operators in L^p , Duke Math. J. 32 (1965), 495-501. MR 31 #6095.
- 5. S. Helgason, Lacunary Fourier series on noncommutative groups, Proc. Amer. Math. Soc. 9 (1958), 782-790. MR 20 #6667.
- 6. J. Price, Some strict inclusions between spaces of L^p -multipliers, Trans. Amer. Math. Soc. 152 (1970), 321-330.
- 7. M. Rieffel, Multipliers and tensor products of L^p-spaces of locally compact groups, Studia Math. 33 (1969), 71-82. MR 39 #6078.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF VIRGINIA, CHARLOTTESVILLE, VIRGINIA 22903